
BioMed Central

Page 1 of 9
(page number not for citation purposes)

BMC Bioinformatics

Open AccessCorrespondence
An introduction to scripting in Ruby for biologists
Jan Aerts*1 and Andy Law2

Address: 1Genome Dynamics and Evolution Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
and 2Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin,
EH25 9PS, UK

Email: Jan Aerts* - jan.aerts@sanger.ac.uk; Andy Law - andy.law@roslin.ed.ac.uk
* Corresponding author

Abstract
The Ruby programming language has a lot to offer to any scientist with electronic data to process.
Not only is the initial learning curve very shallow, but its reflection and meta-programming
capabilities allow for the rapid creation of relatively complex applications while still keeping the
code short and readable. This paper provides a gentle introduction to this scripting language for
researchers without formal informatics training such as many wet-lab scientists. We hope this will
provide such researchers an idea of how powerful a tool Ruby can be for their data management
tasks and encourage them to learn more about it.

Background
The past twenty years have seen an explosion in the quan-
tity of data available to life scientists. Advances in DNA
sequencing technology have resulted in ever cheaper and
faster ways to sequence genomes, genotype individuals,
essay gene and protein expression and otherwise generate
raw data from biological samples. All fields of biology
have been affected and the challenge facing the biologist
now is how to most effectively analyze the vast amount of
data available. Manual inspection has become impossible
and scientists must use programmatic methods to filter
raw data in order to interpret it or to provide the informa-
tion required to generate or test new hypotheses.

Scripting has been defined as "... a way to automate repet-
itive tasks and handle large amounts of data" [1]. We
believe that scripting will become an essential basic skill
for any life-scientist, even for those who would consider
themselves to be entirely wet lab-based.

There are many scripting languages available (including
Perl, Python, Ruby and shell scripting languages), each of

which has strengths and weaknesses as well as fanatical
devotees and denigrators in almost equal measure. How-
ever, it should be noted that there is no single scripting
language perfect for all use-cases. In addition, the interac-
tion between the language syntax and constructs and the
programmer's internal thought process is significant, such
that what appears a perfectly logical choice and represen-
tation in one language to one programmer can appear
obfuscated to another.

With all this in mind, in this short article we will intro-
duce Ruby as a highly suitable scripting language for biol-
ogists to learn and use. We believe that Ruby is an
excellent first step for people new to scripting. Its shallow
learning curve combined with the consistency within the
language make it easy to get started. At the same time, sev-
eral properties of the language (e.g. the fact that built-in
classes can be easily extended to fit different needs) make
advanced scripting simple. Thus we also hope to provide
exponents of other scripting/programming languages
such as Perl, Python or Java some insights as to the capa-

Published: 16 July 2009

BMC Bioinformatics 2009, 10:221 doi:10.1186/1471-2105-10-221

Received: 12 December 2008
Accepted: 16 July 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/221

© 2009 Aerts and Law; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/info/about/charter/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19607723
http://www.biomedcentral.com/1471-2105/10/221
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/

BMC Bioinformatics 2009, 10:221 http://www.biomedcentral.com/1471-2105/10/221

Page 2 of 9
(page number not for citation purposes)

bilities of the Ruby language and encourage them to add
an extra tool to their toolbox.

Features of Ruby
Ruby is a programming (scripting) language devised by
Yukihiro 'Matz' Matsumoto initially released for general
use in 1995. It aims to achieve ease-of-use and, as Mat-
sumoto claims in the foreword to the Programming Ruby
book [2], "It allows you to concentrate on the creative side
of programming, with less stress". It provides a lot of func-
tionality on which the programmer can build without
having to worry about the underlying mechanics. Like
many other programming languages, it borrows heavily
from pre-existing languages (i.c. Perl, Smalltalk and Lisp).

Interpreted language
In order for a computer to execute a set of instructions,
those instructions need to be converted into a form that
the machine processor can understand. The process of
conversion from high-level, human-readable code into
machine-executable instructions can be done either on
the fly as and when needed, or as an explicit step during
development. The distinction between these two
approaches separates languages into 'compiled' (i.e. con-
vert to machine executable as a separate step) and 'inter-
preted' (i.e. convert as required) subsets. Compiled
languages offer advantages in terms of speed of execution
of the finished program whereas interpreted languages
often have the edge when it comes to overall speed of
development. The latter is partly due to elimination of
compilation time, but also to the fact that scripting lan-
guages typically work at a more abstract or higher level
than compiled languages, which means that a single state-
ment on average does more work [3], leading to shorter
programs.

Object-orientation
One of the primary features of Ruby is that it is a strict
Object-Oriented (OO) language. Everything in Ruby is an
object with defined attributes that can be manipulated
using associated methods. Objects are instances of classes,
which describe the object concept. For example an object
"Tom" can be an instance of the Person class. In this
respect it is similar to Smalltalk and Python and less so to
Perl which, although Perl can be used as an OO language,
is more often to be found utilized as procedural code. This
is an important point as it allows the Ruby language to
provide a lot of built-in functionality in an extensible way.

To illustrate the difference Listings 1 and 2 contain some
equivalent code fragments in Perl and in Ruby which read
a series of lines from a file (e.g. called 'my file.txt') and
print them out with each line reversed. Both code frag-
ments will produce identical output given the same input
file.

In the Perl version (Listing 1), the script opens the file,
then pulls lines from it one by one. For each line, it
removes trailing line-feed characters (chomp()), splits it
into individual characters, reverses the order of those
characters and then re-assembles the string which it prints
out. In Perl, a string is simply a concatenation of charac-
ters. Therefore, the programmer has to explicitly write
code split each string into an array of characters, reverse
that array and then join the characters back up into a new
string.

Listing 1 A Perl script to reverse a series of lines from a file

open INFILE, "my_file.txt";

while (defined ($line = <INFILE>)) {

chomp($line);

@letters = split(//, $line);

@reverse_letters = reverse(@letters);

$reverse_string = join("", @reverse
_letters);

print $reverse_string, "\n";

}

In the Ruby version (Listing 2), the script creates a file
object using a built-in routine
(File.open("my_file.txt")). Because files are
objects in Ruby, they 'know' how to do certain things like
return a list of all the lines that the file contains (each).
This list can be passed to a block (do ... end) that
loops over the list putting each line in turn into a variable
placeholder called line. Since each line is a string object
rather than just a concatenation of characters, it comes
packed with added functionality: it can be told to remove
trailing line-feed characters from itself (line.chomp)
and then to reverse itself as well.

Listing 2 A Ruby script to reverse a series of lines from a
file

File.open("my_file.txt").each do |line|

puts line.chomp.reverse

end

Even though the distinction between these two
approaches might not be entirely obvious to the uniniti-
ated, it is profound. A program written in a procedural

BMC Bioinformatics 2009, 10:221 http://www.biomedcentral.com/1471-2105/10/221

Page 3 of 9
(page number not for citation purposes)

way (such as the Perl example) provides a list of tasks that
have to be performed by the computer. An object-oriented
program, however, can be seen as a collection of objects
that interact with each other by sending messages. Each
object is an instance of a general class that describes a con-
cept (for example the String class) and carries its own
operators (e.g. chomp and reverse). In the Perl version, it
is the script that has to handle the file, read lines (strings)
from that file one by one and then perform explicit
actions on those strings. The programmer needs to know
that each line can be converted into an array of characters
and that the array can be reversed and then converted back
into a string. In the Ruby version, however, the script acts
at a higher level. It creates objects representing the file and
the lines and then tells those objects to produce the
desired effect. It is the objects that are responsible for the
mechanics of implementation of that behaviour. The
script does not care about the specifics of the implemen-
tation; it is only concerned with the end result.

The example in Perl code can be made shorter or imple-
mented in an object-oriented way by loading additional
Perl libraries. However, we believe that people new to pro-
gramming are more likely to start working with unmodi-
fied (so-called "vanilla") installations of a programming
language.

Class definition
Listing 3 shows a simple Ruby script illustrating some of
the basic concepts. The line numbering is added here for
explanatory purposes and is not part of the program (and
should therefore not be in the script file). Anything pre-
ceded with a hash symbol (#) is a comment inserted
purely for better human comprehension of the code and
will be skipped by the interpreter.

Listing 3 A simple Ruby object to demonstrate some basic
principles

1 # Let's start with a class definition

2 class Person

3 attr_accessor :name

4 def identify

5 puts "hello - my name is " +
@name

6 end

7 end

8

9 # and then use that class to do some
thing

10 person_one = Person.new

11 person_one = 'Tom'

12 person_two = Person.new

13 person_two.name = 'Nathalie'

14 person_one.identify

15 person_two.identify

This short program generates a Person class, representing
the concept of a person. Note that class names must be
capitalised. We first describe the class and what it should
do, defining a Person as being an object with a (settable
and retrievable) name that can report its name when
asked to identify itself. The attr_accessor :name
code on line 3 makes it possible to access the name prop-
erty of a person as on lines 11 and 13.

Line 10 creates an instance (or object) of the class Person
and puts it in a variable called person_one (variable
names begin with lowercase letters). Line 11 sets the name
of this particular Person (person_one) to be 'Tom'.
Lines 12 and 13 do the same for a second instance of Per-
son (person_two, called 'Nathalie'). Lines 14 and 15 tell
each Person instance in turn to report their name. Because
the Person's @name attribute is a so-called 'instance' vari-
able, each instance of Person has its own name. All person
objects are independent of each other but share the same
behaviour.

This is admittedly a trivial example, but imagine a more
complex example where each Person has @father and
@mother attributes. With a single object class definition,
it becomes possible to implement and explore an entire
family tree.

Classes that describe concepts within a well-defined
domain can be functionally grouped into so-called mod-
ules. A relevant example here is the Bio module provided
by the BioRuby project [4]. BioRuby is an effort by a glo-
bal group of bioinformaticians (led from Japan) to create
such module in the domain of biological research. This
module describes the concepts of a DNA or protein
sequence with their different representations (e.g. EMBL,
GenBank, Fasta), an alignment, the results from a similar-
ity search, pathways, references and other biological/bio-
informatics concepts. For example, the Bio::Sequence
class holds all functionality associated with a biological
sequence. Any object of that class can generate the reverse

BMC Bioinformatics 2009, 10:221 http://www.biomedcentral.com/1471-2105/10/221

Page 4 of 9
(page number not for citation purposes)

complement of itself (e.g. puts
Bio::Sequence.new('AATGCC').complement).
This module does not yet provide all functionality that is
available in the sister-project BioPerl for the Perl language,
but can already be of much value for writing biology-
related scripts. See the BioRuby website for more details of
the functionality of the classes that this module provides.

Blocks
One powerful feature of Ruby is its use of blocks. Blocks
are nameless functions that can be passed to other func-
tions easily and do not have to be defined before being
used. Take for example a collection of people. The
approach to traverse this collection often used in scripting
languages is a for-loop as shown in section A of Listing 4.
In contrast, Ruby scripts typically use the each iterator as
exemplified in section B. As the name implies, iterators are
methods that iterate over a collection and perform a task
on each element of that collection.

The each method takes a block as its argument (either
delineated by "do..end" or by curly braces) and substi-
tutes the variable person within the block with each con-
secutive value in the people collection. Although each is a
method defined in the Array class, iterators can be defined
on other classes as well. A simple example is shown in
Listing 4 section C. This code will print "Hello world" five
times. The times method is defined in the Integer class.

Another common task to be performed on collections is
to select those elements that comply to a given criterion.
To create a list containing only those people younger than
20 years, for example, one could write the code in section
D of Listing 4. Blocks however make it possible to make
an abstraction of this looping. The select method as
shown in section E of Listing 4 has a single block argu-
ment which defines the criteria for selection.

Finally, the strength of blocks can be illustrated with the
sort_by method which takes a block that defines the
rules for sorting. Section F of Listing 4 shows a very simple
example where the people are sorted only by age, but
more complicated sorting algorithms can easily be imple-
mented by changing the code within the block.

Although it is possible and even common to create cus-
tom loop abstractions (e.g. a function that would traverse
a tree depth-first) and create methods that take a block as
argument, this functionality is typically not used by peo-
ple new to programming and therefore exceeds the scope
of this article.

Listing 4 Using blocks in Ruby

1 # A. Using a for-loop

2 for person in people

3 puts person.name

4 end

5

6 # B. Using the each iterator

7 people.each do |person|

8 puts person.name

9 end

10

11 # C. Doing something 5 times

12 5.times do

13 puts "Hello world"

14 end

15

16 # D. Making a subselection for a
collection

17 young_people = Array.new

18 for person in people

19 if person.age < 20

20 young_people.push(person)

21 end

22 end

23

24 # E. Making a subselection for a col
lection using a block

25 young_people = people.select{|per
son| person.age < 20}

26

27 # F. Sorting people

BMC Bioinformatics 2009, 10:221 http://www.biomedcentral.com/1471-2105/10/221

Page 5 of 9
(page number not for citation purposes)

28 people_sorted_by_age = peo
ple.sort_by{|person| person.age}

Reflection
Ruby classes and objects have the ability to reflect on their
own states and functionality. For example, every object
implements a methods function that looks inside the
object's own definition and returns a list of methods that
the object implements. Consequently, because everything
is an object and every object can be queried for its meth-
ods it is very simple to determine how to accomplish
tasks. For example, asking a String object for its list of
methods results in a list of 145 functions, including
reverse, capitalize, chomp (as used in the example
above), swapcase and length.

Meta-programming
Because Ruby classes and objects can reflect on them-
selves, meta-programming is easy in Ruby. Meta-program-
ming refers to either writing code that writes code, or to
changing code at runtime, i.e. while the program is run-
ning. A good example of this is demonstrated in Listing 3.
The attr_accessor :name code on line 3 is actually
translated automatically into methods that allow any
code using a Person object to access (get or set) the
object's name field. If we had wanted only to allow getting
or setting of the name field, we could have used the alter-
natives attr_reader or attr_writer instead.

Meta-programming often starts with providing a
method_missing method in a class. This acts as a catch-
all for methods that do not exist for that class. Listing 5
provides a trivial example. Using this addition to the
standard Integer class, it is possible to use methods such
as multiply_3 or add_9, even though they are never
explicitly defined. When calling 5.multiply_3, for
example, ruby will notice that that method does not exist
and diverts it to method_missing. This approach is the
basis for much of the ActiveRecord module (see below)
that provides a find_by_ method for any column in a
database table without having to explicitly define each.

Listing 5 A simple meta-programming example

1 class Integer

2 def method_missing(method_name)

3 command, number = method_name.to_s.
split(/_/)

4 if command == 'multiply'

5 return self * number.to_i

6 elsif command == 'add'

7 return self + number.to_i

9 end

10 end

Results
To demonstrate the way Ruby can be used in bioinformat-
ics, we will briefly present three simple examples.

Wrapping repetitive commands to run in batch
The authors recently worked on a project in which they
needed to run an analysis program (spidey, [5]) that takes
two inputs – the first a file containing a number of tran-
script sequences and the second a file with a single
genomic sequence. The general format of the command to
be run was:

spidey -m transcript_sequences.fa -i
genomic_sequence.fa >> output.txt

where transcript_sequences.fa is a FASTA-formatted file
containing one or more transcript sequences;
genomic_sequence.fa is a FASTA file with a single
genomic DNA sequence. The results of the analysis are
appended to a file called output.txt.

Unfortunately, the genome in question was not com-
pletely assembled beyond the scaffold stage and was
therefore represented by thousands of separate sequence
files. Running the command manually against each of
those genomic fragments in turn was not a practical prop-
osition. Instead, we used Ruby to deal with the repetition
for us.

In Listing 2 we used a Ruby built-in class called File to
open a file on disk and return each line that it contained.
Here we used a similar built-in class called Dir to return a
list of all the filenames within a directory (Listing 6). We
were then able to use the Ruby system command to run
the spidey program, inserting each filename in turn into
the relevant position.

Listing 6 Wrapping repetitive commands in Ruby

Dir.foreach(".") do |filename|

system("spidey -m
transcript_sequences.fa -i " + filename
+ " >> output.txt")

end

BMC Bioinformatics 2009, 10:221 http://www.biomedcentral.com/1471-2105/10/221

Page 6 of 9
(page number not for citation purposes)

Extracting information from a text file
Researchers are often presented with the challenge of
selecting a subset of lines or columns from a datafile, i.e.
filtering data. This can be done with Microsoft Excel or
standard linux shell commands, but a script becomes nec-
essary for more complicated problems.

Here we will use a list of features described in a GFF file
(General Feature Format, [6]) that resembles Table 1 and
identify those features that overlap with a given region. An
example file containing a small quantity of GFF-formatted
data is provided as Additional File 1. To find out which of
the features (i.e. genes) are contained within a target range
of 300,000 to 450,000 basepairs, we can use the script in
Listing 7.

Listing 7 Finding features in a range

1 class Range

2 def contained_by?(other_range)

3 if self.begin > other_range.begin
and self.end < other_range.end

4 return true

5 else

6 return false

7 end

8 end

9 end

10

11 class GffRecord

12 attr_accessor :seq_id, :source,
:type, :start, :stop, :score, :strand,
:phase, :attributes

13 def initialize(gff_line)

14 @seq_id, @source, @type,
@start, @stop, @score, @strand, @phase,
@attributes = gff_line.split(/\t/)

15 end

16

17 def range

18 return Range.new(@start.to_i,
@stop. to_i)

19 end

20 end

21

22 target_range = Range.new(300000,450000)

23
File.open('additional_file_1.txt').eac
h do |line|

24 line.chomp!

25 gff_record = GffRecord.new(line)

26 if
gff_record.range.contained_by?(target_
range)

27 puts gff_record.attributes

28 end

29 end

In lines 23 to 29 of the script, each line from the datafile
is read and the feature it describes is reported if it falls
completely within the target range we set at line 22.

In more detail, line 23 reads the file and passes each line
one by one to the block defined between lines 24 and 29.
Line 24 removes the newline at the end of the input line
and the line is passed as the argument to create a new
GffRecord object. Next, the range contained in that GFF

Table 1: Example data in GFF format

chr1 Ensembl gene 40344 40376 . + . Accession "ENSG00000177757"
chr1 Ensembl gene 134390 134439 . + . Accession "ENSG00000177750"
chr1 Ensembl gene 394524 394570 . + . Accession "ENSG00000177741"
chr1 Ensembl gene 412258 412298 . + . Accession "ENSG00000187583"
chr1 Ensembl gene 552024 552064 . + . Accession "ENSG00000187642"

BMC Bioinformatics 2009, 10:221 http://www.biomedcentral.com/1471-2105/10/221

Page 7 of 9
(page number not for citation purposes)

record is tested to lie within a target range. If so, the
'attributes' part of the GFF record is printed to the screen.

This example shows how, typically, the part of the script
containing the business logic is quite short (i.e. from line
22 to 29). It is the class definitions that precede it that
make this possible. In line 1 to 9 a new method is added
to the built-in Range class (which is then used on line
26). This class is used to represent intervals, i.e. sets of val-
ues with a start and an end (e.g. '1 to 5'). Lines 11 to 20
define our new GffRecord class. The initialize
method handles the creation of a new object, which
should be given a single line of a GFF file (see line 25).
This line is then split on tabs and each component is put
in its particular instance variable (line 14). In addition to
the initialize method, we also define a range
method (lines 17 to 19). This method returns a Range
object using the object start and stop positions as bound-
aries. Because we return a Range object, and because we
have already extended the Range class (and hence all
Range objects regardless of their origin), we can use the
contained_by? method to determine if this is a record
in which we are interested.

The above example demonstrates a further useful property
of the language: class definitions are open. This means
that it is possible to alter existing and even built-in class
definitions at runtime to add or change behaviour. The
standard Range class does not have a contained_by?
method. Here we just added this functionality on the fly
by defining it between lines 1 and 9, retaining the full
existing functionality of the Range class but extending it
for our needs.

Typically, people writing scripts will start to reuse the
same class definitions (e.g. for a GffRecord) which then
can be put together in a central library. As a result, many
scripts will end up containing only the business logic (i.e.
lines 22 to 29 above) and the custom class definitions as
presented here can be omitted.

Accessing data in a database
Most bioinformaticians will agree that a database is often
the best tool for storing data. It is therefore an important
consideration when choosing a scripting language that it
provide an easy way of interacting with databases. Data-
base interaction in Ruby is typically performed via the
ActiveRecord module.

ActiveRecord is a Ruby module that allows easy interfac-
ing with the tables in a database. Using meta-program-
ming as described above, it connects database tables to
Ruby classes, linking each record in a table to a single
object (i.e. instance) of the corresponding class. This pro-

vides the scripter with a double layer of abstraction – not
only hiding away the specific database engine implemen-
tation details (c.f. the Perl DBI or Java JDBC interfaces)
but also completely removing the need to write SQL
(Structured Query Language) if the database owner agrees
to follow a few simple naming conventions. This is a
theme that recurs throughout Ruby, particularly in the
ActiveRecord framework: convention over configuration.
It is possible to configure Ruby to handle scenarios which
don't map to the convention but to do so is much harder
than to just 'go with the flow' of convention. This of
course leaves the bioinformatician with the choice: either
follow strict rules on how to organize your data, or add a
lot of configurations in your scripts. It is our opinion that
if possible general conventions should be used to simplify
Ruby scripts.

If a database schema follows the documented conven-
tions, ActiveRecord can access the data automatically
through a process called Object/Relationship Mapping
(ORM). The conventions that are relevant here are: (1)
table names have to be plural, (2) the primary key must
be called id, and (3) foreign keys to other tables should
consist of the singular form of that table name followed
by _id.

Listing 8 provides an example of how to interact with an
existing database. Suppose the data from the GFF file in
the previous example was stored in a MySQL database
with three tables, called genes, mappings and transcripts.
Additional File 2 contains the SQL commands to create a
minimal mySQL relational database with the same data as
in Additional File 1. The genes table contains the columns
id, name and accession; the mappings table contains the
columns id, gene id (foreign key to the genes table), chro-
mosome, start and stop; the transcripts table has the col-
umns id, gene id (foreign key to the genes table) and
accession. A simple SQL script suitable for loading exam-
ple data that can be used with the code in Listing 8 is pro-
vided as an additional file. The script illustrates the use of
ActiveRecord (and again reuses our Range class extension
from the previous example).

Output of the script using the data in Additional File 2 will
be:

Q96BN7_HUMAN is in the range 300,000 –
450,000

PLEKHN1 is in the range 300,000 –
450,000

Transcript for ENSG00000187583:
ENST00000379409

BMC Bioinformatics 2009, 10:221 http://www.biomedcentral.com/1471-2105/10/221

Page 8 of 9
(page number not for citation purposes)

Transcript for ENSG00000187583:
ENST00000379410

Transcript for ENSG00000187583:
ENST00000379407

Many things are happening automatically. First of all, any
class that inherits from ActiveRecord::Base (< ActiveRe-
cord::Base) is automatically linked to the table that has
the lowercase plural version of the class name. Secondly,
using has_many, has_one and belongs_to creates
methods for every gene to get its mapping and all its tran-
scripts. To get the mapping for a gene (my_gene), you call
my_gene.mapping; to get the transcripts for a gene, you
call my_gene.transcripts. The latter returns a list of
transcript objects. In many cases, this list will only contain
one element, but sometimes (e.g. for PLEKHN1) multiple
transcripts will be returned. Similar to
line.chomp.reverse in Listing 2, line 38 shows how
different methods can be concatenated: g.map
ping.start calls the start method on g.mapping,
which itself is a call of the mapping method on the object
g. Tables can be queried by any column, by appending the
column name to find_by_, as exemplified in
Gene.find_by_accession (task B in the script).

Listing 8 Extracting data from database

1 require 'activerecord'

2

3 class Range

4 def contained_by?(other_range)

5 if self.begin >
other_range.begin and self.end <
other_range.end

6 return true

7 else

8 return false

9 end

10 end

11 end

12

13 # Establish the connection to the
database

14 # and create the classes.

15 ActiveRecord::Base.
establish_connection(

16 :adapter => 'mysql',

17 :database => 'my_database'

18)

19

20 class Gene < ActiveRecord::Base

21 has_one :mapping

22 has_many :transcripts

23 end

24

25 class Mapping < ActiveRecord::Base

26 belongs_to :gene

27 end

28

29 class Transcript < ActiveRe
cord::Base

30 belongs_to :gene

31 end

32

33 # And then use the classes to do some
tasks:

34 # A. Find all genes in a certain
region

35 target_range = Range.new(300000,450
000)

36 all_genes = Gene.find(:all)

37 all_genes.each do |g|

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:
available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2009, 10:221 http://www.biomedcentral.com/1471-2105/10/221

Page 9 of 9
(page number not for citation purposes)

38 gene_range = Range.new(g.mapping.
start,g.mapping.stop)

39 if
gene_range.contained_by?(target_range)

40 puts g.name + " is in the range
300,000 – 450,000"

41 end

42 end

43

44 # B. Find the transcripts for
ENSG00000187583

45 my_gene = Gene.find_by_accession('E
NSG00000187583')

46 my_gene.transcripts.each do |t|

47 puts "Transcript for ENSG00000187
583: " + t.accession

48 end

Conclusion
We hope that this gentle introduction to the Ruby pro-
gramming language provides a framework for biologists
to start investigating scripting in general. Given the large
amounts of data that are often generated in research, such
as sequences and expression data, scripting might become
a basic tool for researchers in general and not only bioin-
formaticians.

We believe the Ruby language is a good stepping stone for
people not familiar with programming due to its shallow
learning curve, its conciseness, the way iterations are han-
dled and the well-established modules for handling data
such as ActiveRecord.

Further information
There is a plethora of information sources available to
assist the reader first in learning Ruby and subsequently in
using it in (biological) research. Many websites provide
documentation, tutorials and advice for Ruby program-
mers of all levels from novice to expert. These include the
official Ruby website [7], the 'poignant guide to Ruby' [8],
and a website that allows the user to try out Ruby from
within a browser [9]. In addition, a large number of books
are available describing the language, including Program-

ming Ruby: The Pragmatic Programmers' Guide [2], the
Ruby Cookbook [10] and Learning Ruby [11].

Authors' contributions
JA provided the original idea and the impetus to write the
paper. JA and AL contributed equally to the writing of the
document. Both authors read and approved the final
manuscript.

Additional material

Acknowledgements
The authors thank colleagues and reviewers for helpful comments and
BiomedCentral for waiving part of the publication cost.

References
1. Mount DW: Bioinformatics: Sequence and Genome Analysis 2nd edition.

Woodbury, New York: Cold Spring Harbor Laboratory Press; 2004.
2. Thomas D: Programming Ruby. The Pragmatic Programmers' Guide 2nd

edition. The Pragmatic Programmers LLC; 2004.
3. Ousterhout J: Scripting: Higher-Level Programming for the

21st Century. COMPUTER 1998, 31(3):23-30.
4. BioRuby [http://bioruby.open-bio.org/]
5. Wheelan SJ, Church DM, Ostell JM: Spidey: a tool for mRNA-to-

genomic alignments. Genome Research 2001, 11:1952-1957.
6. GFF [http://www.sanger.ac.uk/Software/formats/GFF/]
7. Ruby Programming Language [http://www.ruby-lang.org/]
8. why's (poignant) guide to ruby [http://qa.poignantguide.net/]
9. try ruby! (in your browser) [http://tryruby.hobix.com/]
10. Carlson L, Richardson L: Ruby Cookbook O'Reilly Media, Inc; 2006.
11. Fitzgerald M: Learning Ruby O'Reilly Media, Inc; 2007.

Additional file 1
Example data in GFF format. A short example file containing GFF-for-
matted data for use with Listing 7.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-221-S1.txt]

Additional file 2
SQL loading script. A SQL script to load data into a database suitable for
use with Listing 8.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-221-S2.sql]

http://www.biomedcentral.com/
http://www.biomedcentral.com/content/supplementary/1471-2105-10-221-S1.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-10-221-S2.sql
http://bioruby.open-bio.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11691860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11691860
http://www.sanger.ac.uk/Software/formats/GFF/
http://www.ruby-lang.org/
http://qa.poignantguide.net/
http://tryruby.hobix.com/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp

	Abstract
	Background
	Features of Ruby
	Interpreted language
	Object-orientation
	Class definition
	Blocks
	Reflection
	Meta-programming

	Results
	Wrapping repetitive commands to run in batch
	Extracting information from a text file
	Accessing data in a database

	Conclusion
	Further information
	Authors' contributions
	Additional material
	Acknowledgements
	References

